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1. Introduction

This paper is based on statistical considerations of topics
related to log bucking outcome in cut-to-length (CTL) for-
est harvesting. The first steps towards a fully mechanized
forest harvesting industry were taken about 50 years ago
when the first forest harvesters, i.e. forest machines ca-
pable of felling, delimbing and bucking trees, were intro-
duced (Drushka & Konttinen, 1997; Gellerstedt & Dahlin,
1999). The degree of mechanization, however, varies con-
siderably between different countries. In the Nordic coun-
tries, for example, almost all harvesting is currently done
mechanically, while in many Eastern European countries
the traditional motor-manual methods still dominate (Ax-
elsson, 1998; Asikainen et al., 2005). According to a rough
estimate (Ponsse Oyj, 2006), about 45% of the world’s an-
nual cutting volume is currently harvested mechanically.
The degree of mechanization, however, is expected to fur-
ther increase worldwide as the forestry industry focuses on
reducing costs, improving productivity and concentrating
on labor-related issues (Murphy, 2002).

Mechanized harvesting can be divided into three main
methods which differ in terms of the amount of process-
ing done at the harvesting site in the forest (Pulkki, 1997;
Owende, 2004). (1) In the cut-to-length method trees are
felled, delimbed and bucked into shorter logs directly upon

felling. The resulting logs are then transported by a for-
warder to the roadside and further by timber truck to the
production plant(s) for further processing. (2) In the tree-
length method (TL) trees are only topped (i.e. the top of a
tree is cut off at a pre-determined minimum diameter) and
delimbed in the forest. The 5 bucking is done at the sep-
arate terminal or at the mill’s log yards. (3) In the whole
tree method (also known as the full tree method) trees are
felled and forwarded to the roadside with branches and top
intact. The whole (full) trees are further processed either
at the roadside or, after haulage, at the central processing
yard or the mill.

Although the popularity of the CTL method is steadily
growing, it still today accounts for less than half of the
world’s roundwood harvest (Asikainen et al., 2005). A rough
estimate of its current share in the world’s mechanically
harvested timber is about 35% (Ponsse Oyj, 2006). In Fin-
land and Sweden almost all harvesting is carried out by
CTL systems (Gellerstedt & Dahlin, 1999). The CTL method
is also re-establishing itself in North America, where the
TL and full tree systems have traditionally been the domi-
nant harvesting methods (Pulkki, 1997).
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Most harvesters currently employed in CTL operations are single-grip models. A single-grip harvester has only one
unit for both felling and reproducing processes mounted on an articulating arm. A double-grip (two-grip) harvester, which
was popular in the 1970s, has two separate units; one for felling and the other for the delimbing, bucking and sorting
processes.

The first CTL harvesters with automatic measuring systems came onto the market in the early 1970s. These first
measuring systems, however, could measure and record only tree length. The capability of continuously measuring tree
diameter while harvesting was not incorporated into them until the mid 1980s (Marshall, 2005; Drushka & Konttinen,
1997). Today harvesters are equipped with high-class information systems able not only to measure the dimensions of
trees but also to predict the stem profile of each tree being processed and thereby to tailor the bucking outcome for the
desired output. They have thus become an important part of the logistics chain from the forest to the end user. To optimize
the overall flow, more recent development has focused on utilizing modern information technology such as geographical
and positioning systems (GIS and GPS), online internet applications and information transfer over mobile phones.

In the course of processing, the harvester first fells the tree and then runs it through the processing unit (i.e., a harvester
head in a single-grip or a delimbing-cutting device in a double-grip harvester). The length along the stem is simultaneouly
measured either by the running wheel located at the harvester head (90% of all heads) or on the feed-rollers (Gellerstedt,
2002). The stem diameter is usually measured by the amount of opening in the delimbing knives or the feed-rollers using a
cross measure. In measuring the stem, the data are simultaneously stored in an on-board computer. Before starting bucking
optimization, filtering or smoothing techniques are used to eliminate the most crucial discrepancies in the measured data.

The common trend in the sawmill industry, at least in Scandinavia, is towards customer-oriented production of well-
defined products. In fact, controlling the wood flow from forest to mills in such a way that the mills’ requirements are
satisfied has recently been seen as an even more important development area in wood procurement than the traditional
attempt to reduce transportation and harvesting costs (Kivinen, 2006). As customer-oriented production strategies have
gained ground in the sawmill industry, it has become more and more important not only to supply the sawmill with a
sufficient number of logs at minimum cost, but also to ensure that the raw material meets the requirements of the sawmill
as regards length, diameter and quality distribution of logs (Kivinen, 2004). This, in turn, has made proper assessment of
the goodness of the bucking outcome of crucial importance.

In general, there are two situations where the agreement between the distribution of logs demanded by the sawmill
(demand distribution) and the actual outcome (output) distribution of logs is of particular interest. These are (1) the
standard pre-harvest planning procedure where most suitable stands for prevailing customer orders need to be determined,
and (2) the postharvest analysis where it may be desirable to know, for example, how various harvesters have succeeded in
meeting a certain demand distribution or to determine whether there are any significant differences between various wood
suppliers. A proper measure for evaluating the bucking outcome also provides information on how to adjust the bucking
instructions to meet the desired log distribution (Kivinen et al., 2005).

We organize the rest of this paper as follows. In Section 2, following Nummi et al (2005), Sinha et al (2005a) and
Sinha et al (2005b), among others, we introduce and breifly reveiw the concept of ’Apportionment Index’ and related for-
mulae for its measurement. In Section 3, we discuss the main distributional properties of Price-Weighted Apportionment
Index(AIw). In Section 4, we give the statistical analysis of AIw along with an illustrative example. We consider the
problems of (1) determination of sample size N for the AIw to attain a preassigned lower tolerance limit with a specified
confidence level, and (2) determination of a lower tolerance limit to be attained by the AIw for given sample size N, again
with a specified confidence level. In section 5, we make some concluding remarks and discuss scope for further research.

2. Measuring the Bucking Outcome

2.1. Target, Outcome and Price Matrix

The outcome of the actual harvesting operation has been measured mainly by comparing the relative proportions of the
output and target distributions. More specifically, let

θ = (θij) = θ11θ12...............θ1n θ21θ22...............θ2n ...... ...... ...... θm1θm2...............θmn (1)

denote them×n demand (target) matrix for a certain log type, where each row represents a particular small end diameter
(SED) class of logs, each column refers to a particular length class and tij is the number of logs in the ith diameter class
and jth length class, i = 1, ...,m and j = 1, ..., n. A log with an SED of d and a length of l will belong to the log class
(i, j) if the log satisfies the constraints di d < di+1and lj , l < lj+1. Correspondingly, m× n matrix

X = (Xij) = X11X12...............X1n X21X22...............X2n ...... ...... ...... Xm1Xm2...............Xmn. (2)
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denotes the outcome of the harvesting operation. The m × n price matrix specifies relative prices for all log categories,
i.e. determines how valuable or profitable it is to cut different length-diameter combinations of a particular log type. The
price matrix can be given as

P = (p∗ij) = p∗11p
∗
12...............p

∗
1n p∗21p

∗
22...............p

∗
2n ...... ...... ...... p∗m1p

∗
m2...............p

∗
mn. (3)

where p∗ij = pij∑∑
pij

is the relative price of the ith diameter and jth length combination of logs and pij is the respective

absolute price.

2.2. Some Measures for Evaluating the Log Bucking Outcome

A common practice in Scandinavia is to evaluate the fit between the demand and actual output log distributions with the
Apportionment Index (AI) or Apportionment Degree, first introduced in forestry by Bergstrand in the mid- 1980s (e.g.
Bergstrand, 1989). For a fixed quality class the AI is defined as

AI = 1 − 1
2

m∑
i=1

n∑
j

|X∗
ij − θ∗ij | (4)

where X∗
ij = Xij∑∑

Xij
and θij = θij∑∑

θij
are the relative proportions of the outcome and target matrices, respectively.

After some simple manipulations it can be shown that the AI can be rewritten as

AI =
m∑

i=1

n∑
j

min(Xij , θij). (5)

The maximum value of the AI is 1 (100%), which indicates a perfect match between the distributions. The minimum
value of the index is min(θ11, θ12, ..., θmn), i.e. the smallest relative cell target, which is reached when all the logs fall
into the diameter-length class of the smallest target proportion. In some of the original papers this kind of a scenario is
referred to as a perfect mismatch.

The AI may be interpreted as the proportion of the ”correctly” located logs in the outcome distribution with respect
to the demanded log distribution. For example, if the AI value were 0.85, this would mean that 85% of the produced logs
are in accordance with the demanded distribution while 15% are of the wrong size and should have been allocated to
other log categories during the bucking process to make the outcome equal to the target, i.e. to attain complete agreement
between the two distributions. In fact, by observing the deviation of the outcome from the target matrix in terms of upload
or download, i.e. cij = Xij − θij , the AI can also be expressed for equal matrix totals as

AI =
N −∑m

i=1

∑n
j cijI(cij > 0)
N

. (6)

where N =
∑m

i=1

∑n
j Xij =

∑m
i=1

∑n
j θij and I(cij > 0) = 1 for cij > 0 and 0 otherwise.

The AI has gained ground especially by merit of its simplicity, easy interpretability and ease of use. The measure
has been criticized mainly as being too crude, since, for example, it attributes the same weight to all log classes. Hence,
a price-weighted version of the AI was proposed by Kivinen et al.(2005) and Nummi et al. (2005). The price-weighted
Apportionment Index utilizes the price matrix and is defined as

AIw =
m∑

i=1

n∑
j=1

p∗ijmin(X∗
ij , θ

∗
ij) (7)

The AIw is not as amenable to interpretation as the non-weighted AI, which is clearly seen as a disadvantage of the
measure.

Some penalty-based variants of the traditional AI were proposed in Kirkkala et al.(2000), Weijo (2000) and Malinen &
Palander (2004). The idea of using prices as weights when measuring the agreement of the two distributions lead Kivinen
et al. (2005) to apply the theory of index numbers common in economics. The authors suggested the use of the Laspeyres’
quantity index to describe the relationship between the values of the postharvest and preharvest log distributions. We will
not discuss these incidences in our paper.

Instead of using the Apportionment Index or its derivatives to evaluate the similarity between the demand and output
log distributions, standard statistical tests can also be applied. The most commonly used test for examining the goodness-
of-fit of grouped data is the frequency χ2 − test, which was applied in the forestry context e.g. in Malinen & Palander
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(2004), Kivinen et al. (2005) and Nummi et al. (2005). Using the same notations as above, the test statistic can be defined
as

χ2 =
m∑

i=1

n∑
j=1

(Xij − θij)2

θij
. (8)

In the case of a perfect match the value of the χ2-statistic equals zero. However, as the deviation between the two
matrices increases, the value of the measure also increases, giving large positive values for large deviations. Kivinen et al.
(2005) solved the scaling problem of the χ2 − statistic by using the contingency coefficient C defined as

C =

√
χ2

χ2 +N
. (9)

where N is the total number of logs harvested. Subtracting the contingency coefficient from 1 then yields a measure
which equals 1 for perfect match and tends to decrease towards 0 as the deviation between the distributions increases.
Nummi et al. (2005), however, solved the scaling problem by utilizing the p-value assigned to the χ2-statistic. The AI is
closely related to e.g the Dissimilarity Index (DI) or Index of Dissimilarity commonly used in sociology for measuring
segregation. One of the very first instances of the DI as a measure of segregation was that in the paper by Jahn et al.
(1947). The DI is also commonly used to summarize the closeness of fit of a model to the categorical sample data (e.g.
Agresti, 2002, pp. 329-330). The so-called overlapping coefficient (OVL) was later defined as a generalized measure of
agreement or similarity between two probability distributions or two populations represented by such distributions (Inman
& Bradley, 1989). If f1(x) and f2(x) are density functions defined on the n-dimensional Euclidian space Rn, then the
OVL can be defined as

OV L =
∫

Rn

min[f1(x), f2(x)]dx (10)

In a simple univariate case the OVL is simply the fraction of the probability mass common to both distributions. In a
case of two discrete probability distributions, the relation of the OVL to the Apportionment Index and Dissimilarity Index
can be expressed as OV L = 1 −DI = AI.

Although the traditional AI is today the measure most widely used for assessing the agreement between the demand
and the output log distributions, its superiority over the other measures is somewhat questionable. It is not easy to make
comparisons between the measures, since, first, they differ in scaling and, second, there exists no commonly approved
yardstick capable of giving the ”true” ranking of all possible bucking outcomes with respect to the given demand distribu-
tion. Kivinen et al. (2005) approached the problem of comparing different measures by defining four criteria for an ideal
measure. Four alternative goodness-of-fit measures were then tested against the criteria. The tested measures were: (1)
the traditional AI, (2) the χ2 − statistic , (3) the Laspeyres’ quantity index and (4) the price-weighted AI. The results
of the study showed no marked differences between the performances of the four measures compared. Neither did the
results indicate the universal superiority of any of the candidates. All four measures met three of the four requirements
of an ideal measure and provided fairly consistent results for different demand matrices in different stand types. Malinen
& Palander (2004) compared the performance of five alternative goodness-of-fit measures on the basis of their ability
to control the bucking-to-demand procedure. Since the use of the goodness-of-fit measures in the online control of the
bucking procedure is not a topic of this paper, we may content ourselves with the above reference to this particular study.

3. AIw- Distributional Results

We will use the notations and terminologies as in the above, mostly without explicit mention of the source of the problem
such as ’log distribution’ of different ’width-length dimensions’. Our results are very general and apply in similar con-
texts. An Appendix at the end includes some basic results used for the mathematical derivations in this section. We assume
that the observed frequency counts in the given matrix x = ((xij)) of dimension m× n in different cross-classified cells
constitute a realization of random frequency counts in the matrix X = ((Xij)) of the same dimension. Further, ((Xij))’s
follow the standard multinomial distribution i.e. (X11,X21 . . . . . . Xmn) ∼MN(N ; θ∗11, θ

∗
21 . . . . . . θ

∗
mn).

where θ∗ij’s are the cell probabilities with θ∗ij ∈ (0, 1) and
∑∑

θ∗ij = 1.

Remark 1 Again, from forestry application perspective, the distributional assumption may not necessarily make sense if
a stand is tried to harvest by a target which is unsuitable for the particular stand. It is, for example, impossible to produce
’logs’ with large Small End Diameter from trees with smaller Diameter at Breast Height. A situation of this kind imme-
diately leads to a poor fit between the outcome and demand distribution arguing that the outcome cannot be a realization
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from the given multinomial distribution. However, if the pre-harvest planning procedure is performing appropriately, it
seems reasonable that the selection of the harvested stands is done such that the production of the requested logs is possi-
ble.
Once more, we reiterate that for the relative random outcome, we have used the notation X∗

ij = (X∗
11,X

∗
21 . . . . . . X

∗
mn),

where X∗
ij = Xij

N ∈ (0, 1) and
∑∑

X∗
ij = 1. It readily follows that Xij ∼ Bin(N, θ∗ij) and hence,

E(X∗
ij) = E

(
Xij

N

)
= θ∗ij . (11)

V
(
X∗

ij

)
= V

(
Xij

N

)
=
θ∗ij
(
1 − θ∗ij

)
N

= σ2
ij . (12)

Cov
(
X∗

ij ,X
∗
rs

)
= −θ

∗
ijθ

∗
rs

N
, (ij) �= (rs). (13)

Corr
(
X∗

ij ,X
∗
rs

)
= −

√
θ∗ijθ∗rs(

1 − θ∗ij
)
(1 − θ∗rs)

= ρij,rs. (14)

Under certain conditions, the binomial distribution can be approximated by the normal distribution. A conservative rule
to follow in the case of X ∼ Bin(n, p) is that min(np, n(1 − p)) ≥ 5 (see e.g. Casella and Berger 2002, p. 104-105).

The normal approximation gives
√

N(X∗
ij−θ∗

ij)√
θ∗

ij(1−θ∗
ij)

∼ N(0, 1).

If we assume normal distribution, upon application of Result A.1 in Appendix, E(AIw) becomes

E(AIw) = E

(∑m
i=1

∑n
j=1 p

∗
ij

[
X∗

ij+θ∗
ij

2 − |X∗
ij−θ∗

ij|
2

])

=
∑m

i=1

∑n
j=1 p

∗
ijE

[
X∗

ij+θ∗
ij

2 − |X∗
ij−θ∗

ij|
2

]
= 1

2N

∑m
i=1

∑n
j=1 p

∗
ij

(
Nθ∗ij +Nθ∗ij

)− 1
2N

∑m
i=1

∑n
j=1 p

∗
ijσij

√
2
π

=
∑m

i=1

∑n
j=1 p

∗
ijθ

∗
ij − 1√

2Nπ

∑m
i=1

∑n
j=1 p

∗
ij

√
θ∗ij
(
1 − θ∗ij

)
.

= θ
∗
(P ∗) − D(θ)√

N
.

where

D (θ) =
1√
2π

m∑
i=1

n∑
j=1

p∗ij
√
θ∗ij
(
1 − θ∗ij

)
. (15)

It follows from (1) that AIw ≤ ∑∑ p∗ijθ
∗
ij = θ

∗
(P ∗), say, with probability 1. Hence, trivially, E(AIw) ≤ θ

∗
(P ∗),

which is also evident from the above. Further, it is seen that as N increases, the limiting value of E(AIw) coincides with
θ
∗
(P ∗).
We now proceed to compute an expression for the variance of AIw. There are technical details which are relegated to

the appendix. The main results are listed below.

V(AIw) = V
(

1
2

∑m
i=1

∑n
j=1 p

∗
ijθ

∗
ij + 1

2N

∑m
i=1

∑n
j=1 p

∗
ij (Xij − |Xij − θij |)

)
= 1

4N2V
(∑m

i=1

∑n
j=1 p

∗
ij (Xij − |Xij − θij |)

)
= 1

4N2

[∑m
i=1

∑n
j=1 V

(
p∗ij (Xij − |Xij − θij |)

)]
+ 1

4N2Cov
[(∑m

i=1

∑n
j=1 p

∗
ij (Xij − |Xij − θij |) ,

∑m
r=1

∑n
s=1,(ij) �=(rs) p

∗
rs (Xrs − |Xrs − θrs|)

)]
= 1

4N2

[∑m
i=1

∑n
j=1(p

∗
ij)

2V (Xij − |Xij − θij |)
]

+ 1
4N2

[
Cov

(∑m
i=1

∑n
j=1 p

∗
ijXij ,

∑m
r=1

∑n
s=1,(ij) �=(rs) p

∗
rsXrs

)]
+ 1

4N2Cov
(∑m

i=1

∑n
j=1 p

∗
ij |Xij − θij | ,

∑m
r=1

∑n
s=1,(ij) �=(rs) p

∗
rs |Xrs − θrs|

)
− 1

4N2Cov
(∑m

i=1

∑n
j=1 p

∗
ijXij ,

∑m
r=1

∑n
s=1,(ij) �=(rs) p

∗
rs |Xrs − θrs|

)
− 1

4N2Cov
(∑m

i=1

∑n
j=1 p

∗
ij |Xij − θij | ,

∑m
r=1

∑n
s=1,(ij) �=(rs) p

∗
rsXrs

)
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=
1

4N2

⎡
⎣ m∑

i=1

n∑
j=1

2(p∗ij)
2
(
Nθ∗ij

(
1 − θ∗ij

))
(1 − 1

π
) + (A+B − C −D)

⎤
⎦

=
1

4N2

⎡
⎣2

m∑
i=1

n∑
j=1

(p∗ij)
2
(
Nθ∗ij

(
1 − θ∗ij

))
(1 − 1

π
)

⎤
⎦

− 1
4N2

∑∑
(i,j)

∑ ∑
(r,s),(i,j) �=(r,s)

p∗ijp
∗
rsNθ

∗
ijθ

∗
rs

+
1

2πN2

∑∑
(i,j)

∑ ∑
(r,s),(i,j) �=(r,s)

p∗ijp
∗
rs

√
Nθ∗ij

(
1 − θ∗ij

)√
Nθ∗rs (1 − θ∗rs)

[
ρij,rssin

−1ρij,rs +
√(

1 − ρ2
ij,rs

)− 1
]

=
V (θ)
N

.

V (AIw) =
V (θ)
N

. (16)

where
V (θ) = 1

2 (1 − 1
π )
[∑m

i=1

∑n
j=1(p

∗
ij)

2
(
θ∗ij
(
1 − θ∗ij

))]− 1
4

∑∑
(i,j)

∑∑
(r,s),(i,j) �=(r,s) p

∗
ijp

∗
rsθ

∗
ijθ

∗
rs

+ 1
2π

∑∑
(i,j)

∑∑
(r,s),(i,j) �=(r,s) p

∗
ijp

∗
rs

√
θ∗ij
(
1 − θ∗ij

)√
θ∗rs (1 − θ∗rs)[

ρij,rssin
−1ρij,rs +

√(
1 − ρ2

ij,rs

)− 1
]
.

In the above,
(i) ’A’ involves Cov

(
X∗

ij ,X
∗
rs

)
= − θ∗

ijθ∗
rs

N , (ij) �= (rs).
(ii) ’B’ involves Cov (|X − θ1| , |Y − θ2|) and this has been worked out in the Results A.4 [expression (13)] of the ap-
pendix.
(iii) ’C’ and ’D’ involve the expressions of the form Cov (Xij , |Xrs − θrs|) which are shown to be zero in the Result A.3
of the appendix.

4. Statistical Analysis of Price-Weighted Apportionment Index

4.1. Illustrative Example

The following are the target matrix, output matrix and the price matrix taken from Sinha et al(2005b).

θ∗ =

⎡
⎢⎢⎢⎣

0.028 0.028 0.058 0.045 0.045
0.037 0.017 0.065 0.045 0.037
0.017 0.049 0.037 0.044 0.055
0.022 0.039 0.039 0.044 0.059
0.019 0.030 0.047 0.054 0.052

⎤
⎥⎥⎥⎦ x∗ =

⎡
⎢⎢⎢⎣

0.02889 0.01444 0.06222 0.04111 0.04556
0.03778 0.006667 0.06889 0.04667 0.03556
0.01667 0.045556 0.03444 0.04556 0.05889
0.02222 0.04 0.04 0.04444 0.06333
0.01778 0.02667 0.04778 0.05444 0.05444

⎤
⎥⎥⎥⎦

P∗ =

⎡
⎢⎢⎢⎣

0.02785 0.02868 0.02924 0.03008 0.03035
0.03453 0.03564 0.03620 0.03732 0.03760
0.04010 0.04121 0.04205 0.04344 0.04372
0.04344 0.04483 0.04567 0.04678 0.04734
0.04456 0.04595 0.04678 0.04818 0.04845

⎤
⎥⎥⎥⎦

The price weighted observed apportionment index AIw = 0.0394. The maximum value of AIw i.e., θ
∗
(P ∗) for the

given dataset is 0.04042. The standardized value of AIw is AIw

θ
∗
(P∗)

= 0.9739.Moreover D (θ) = 0.0772 and V (θ) =
0.00016.
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Table 1:Display of sample size N for a pre-assigned lower tolerence limit γ
(
θ
∗
(P ∗)

)
to the AIw, with a confidence limit of 95% /

99%.
2*γ 2*lower tolerence limit = γ

(
θ
∗
(P ∗)

)
α = 0.05 α= 0.01

N N

0.5 2.02% 24 28
0.6 2.43 % 37 44
0.7 2.83 % 66 78
0.8 3.23 % 147 175
0.9 3.64% 590 699
0.95 3.84% 2358 2796

4.2. Statistical Analysis

For the output and target matrices to be considered in agreement with each other (keeping in veiw the importance of the
price matrix as well), the lower tolerance limit serves as the least acceptable value of the AIw. Thus, in a case where
the observed outcome matrix assigns the index value which falls below the lower tolerance limit, we would consider
the outcome to indicate disagreement with the given target matrix. Overall, the larger the observed AIw, the better the
agreement. We hence suggest two approaches to indicate a satisfactory level of agreement:

(1) The first approach uses the upper limit
(
θ
∗
(P ∗)

)
of AIw or of E(AIw) as the point of reference;

(2) The second approach uses the mean(E(AIw)) as the point of reference.
It is worth noting, especially for practical implementation, that E(AIw) is very easy to compute.

The first approach is as follows :

P
(
AIw > γθ

∗
(P ∗)

)
≥ 1 − α

⇒ Z1−α =
γθ

∗
(P ∗) − E(AIw)√
V (AIw)

. (17)

Recall that E(AIw) = θ
∗
(P ∗) − D(θ)√

N
while V (AIw) = V (θ)

N . From (9), we can solve for N and γ interchangeably for
given α. Further note that Z1−α = −Zα. Specifically we have

Formula for N:

N =

[
D (θ) + Zα

√
V (θ)

θ
∗
(P ∗) (1 − γ)

]2

. (18)

Formula for γ:

γ = 1 −
[
D (θ) + Zα

√
V (θ)

θ
∗
(P ∗)

√
N

]
. (19)

In the tables below we provide some numerical computation with reference to the target matrix and the price matrix
displayed above. Note that θ

∗
(P ∗) = 4.04%.

The second approach involving E(AIw) as a reference point, is as follows:
P (AIw > E(AIw) (1 − ε)) ≥ 1 − α,

⇒ Z1−α = −Zα = − E(AIw)ε√
V (AIw)

.

For a given α and ε , we use this formula to determine N :

N =

[
Zα

√
V (θ)

εθ
∗
(P ∗)

+
D (θ)

θ
∗
(P ∗)

]2

(20)

For given N and α , we use the following equation to solve for ε

ε =
Zα

√
V (θ)

N

θ
∗
(P ∗) − D(θ)√

N

(21)

c© 2012 NSP
Natural Sciences Publishing Cor.



60 J V Sukanya Divvela, Bikas K Sinha : Statistical Aspects of Forest Harvesting ...

Table 2: Display of standardized lower tolerance limit (γ) for given sample size N.
N lower limit standardized lower limit (in % ’s)(γ)

100 3.06% 75%
200 3.35% 83%
300 3.48% 86%
400 3.55 % 88%
500 3.60 % 89%
600 3.64 % 90%
700 3.67 % 91%
800 3.70 % 91.4%
900 3.71% 92%
1000 3.73% 92.3%
1500 3.80 % 94%
2000 3.822% 94.5%
2100 3.827 % 94.7%
2200 3.832% 94.8%
2300 3.837% 94.9%
2350 3.839% 94.99%
2400 3.84% 95.04%

Table 4:Display of Standardized lower bound for given N (α = 0.05 only)
2*N Lower bound = E(AIw) (1 − ε) Standardized lower bound∗

Values of ε γ
50 10% 66%
100 6.4% 76%
200 4.2% 83%
300 3.4% 86%
400 2.9% 88%
500 2.5% 89%

*Based on an alternative expression for the lower bound given by γθ
∗
(P ∗).

5. Concluding Remarks

The concept of Apportionment index is relatively new. Still it transpires that eqivalent but different termenologies have
been in use for quite some time. For example, Distribution Level (DL) is identical to the index AI. It is also known
as Target Assortment Percentage(TAP) The well known Chi-square Statistic has been defined as usual. A variation of
Chi-square, akin to DL, has also been introduced as Squared Distribution Level (SDL) and it is defined as

SDL = 100 ∗
(

1 −
∑k

i=1 (Ddi −Doi)
2

2

)
. (22)

Malinen and Palander (2004) introduced what are called Penalty Segmented Distribution Level (PSDL) and Flexible
Penalty Segmented Distribution Level (FPSDL), defined as

PSDL = 100 ∗
(

1 −
∑k

i=1max (0, |Ddi −Doi| − TiDdi)
2

)
. (23)

FPSDL = 100 ∗
(

1 −
k∑

i=1

(Ddi −Doi)
2

2Fi

)
. (24)

We propose to study the statistical properties of these generalized versions of the Apportionment Index, with/without
the price matrix under consideration.

We refer to Kirkkala et al (2000) and Malinen and Palander (2004) for studies related to these measures.
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Appendix

Result A.1 : Suppose X ∼ N(θ, σ2) .

Then

E(|X − θ|) = σ

√
2
π
and V (|X − θ|) = σ2(1 − 2

π
). (25)

The proof is omitted.

Result A.2: Suppose X ∼ N(θ, σ2)

Then V (X − |X − θ|) = 2σ2(1 − 1
π ).

Proof.

V (X − |X − θ|) = V (X) + V (|X − θ|) − 2Cov(X, |X − θ|) = 2σ2(1 − 1
π ) − 2Cov(X, |X − θ|).

Note that

Cov(X, |X − θ|) = Cov(X − θ, |X − θ|)
= E((X − θ) |X − θ|)
=

1
σ
√

2π

∫ ∞

−∞
(x− θ) |X − θ| e− 1

2 ( x−θ
σ )2

dx

= σ2

∫ ∞

−∞
u |u|φ (u) du = 0.

since u |u| is an odd function. Finally therefore,

V (X − |X − θ|) = 2σ2(1 − 1
π

) − 2Cov(X, |X − θ|) = 2σ2(1 − 1
π

). (26)

Result A. 3. Suppose(X,Y ) ∼ BV N
(
θ1,θ2, σ

2
1 , σ

2
2 , ρ
)
.

Then Cov (X, |Y − θ2|) = 0.
Proof.

Cov (X, |Y − θ2|) = Cov (X − θ1, |Y − θ2|)
= E[(X − θ1) |Y − θ2|]
= E[E[(X − θ1) | (Y − θ2)] |Y − θ2|]
= ρσ1/σ2E[(Y − θ2) |Y − θ2|] = 0. (27)

by Result A.2 in (10).

Result A. 4.

In the following we assume(X,Y ) ∼ BV N
(
θ1,θ2, σ

2
1 , σ

2
2 , ρ
)
. Then

Cov (|X − θ1| , |Y − θ2|) = σ1σ2Δ (ρ) , (28)

where Δ (ρ) = 2
π

[
ρsin−1ρ+

√
(1 − ρ2) − 1

]
.

Proof.
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Sinha et al (2005) provided a proof of this result. Here we follow a different approach and give an alternative proof of
this result.
We make the transformations U = (X − θ1)/σ1, V = (Y − θ2)/σ2 so that (U, V ) follows BV N(0, 0, 1, 1, ρ). Then,
Cov (|X − θ1| , |Y − θ2|) = σ1 σ2Cov (|U | , |V |) = σ1σ2 [E (|U | |V |) − 2/π] .

We now proceed to evaluate an explicit expression for E (|U | |V |) . This we do by conditional argument, noting that
conditional on V = v, U is normal with mean ρv and variance (1 − ρ2). Not to obscure any essential steps of reasoning,
we proceed through the following steps.

Step1

E(|U | | V ) =
∫ 0

−∞ (−u) f(u | v)du+
∫∞
0
uf(u | v)du

=
∫∞
−∞ uf(u | v)du− 2

∫ 0

−∞ uf(u | v)du
= ρv − 2

∫ 0

−∞ uN(ρv,
√

(1 − ρ2)du
= ρv + 2

∫∞
0
uN(−ρv,√(1 − ρ2)du. (28)

Step2

The first term in the above will yield E(V |V |) = 0. As to the second term, we make usual variable transformation to
Z = (U + ρv)/

√
(1 − ρ2). At this stage we set

c =
ρ√

(1 − ρ2)
(29)

Then, ignoring the multiplier 2, the integral reduces to∫ ∞

vc

(−ρv + z
√

(1 − ρ2)φ(z)dz = (−ρv)[1 − Φ(vc)] +
√

(1 − ρ2)
∫ ∞

cv

zφ (z) dz

= −ρv + ρvΦ(vc) +
√

(1 − ρ2)φ(vc)

= −T1 + ρT2 +
√

(1 − ρ2)T3. (30)

Note that E(V |V |) = 0 so that T1 does not effectively contribute anything. Next, we evaluate E (T2 |V |) and E (T3 |V |)
below.

Step3.

E (T2 |V |) = E (V Φ (V c) |V |) =
∫ ∞

−∞
vΦ (vc) |v|φ (v) dv =

∫ ∞

0

v2 (2Φ(vc) − 1)φ (v) dv = (2I∗ − 1/2), say. (31)

Evaluation of I∗.

I∗ =
∫ ∞

0

[v (Φ (vc))] [vφ (v)] dv

=
∫ ∞

0

(vΦ (cv))

(
v

(
1√
(2π)

e−
v2
2

))
dv

=

[
(vΦ (cv))

[
−1√
(2π)

e−
v2
2

]]∞
0

−
∫ ∞

0

(Φ (cv) + cvφ (cv))

(
−1√
(2π)

e−
v2
2

)
dv

=
∫ ∞

0

Φ (cv)

(
1√
(2π)

e−
v2
2

)
dv +

1√
(2π)

∫ ∞

0

(cv)φ (cv) e−
v2
2 dv

=
∫ ∞

0

Φ (cv)

(
e−

v2
2√

2π

)
dv +

1√
(2π)

∫ ∞

0

c

⎛
⎜⎝e− v

2(c2+1)
2√

2π

⎞
⎟⎠ d

(
v2

2

)

=
∫ ∞

0

Φ (cv)φ (v) dv +
c

(c2 + 1) 2π

= ψ(c) +
c

(c2 + 1) 2π
, say. (32)
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I∗ = ψ(c) +
c

(c2 + 1) 2π
. (33)

We now deduce the expression for ψ(c) below. Note that

ψ(c) =
∫ ∞

0

Φ (cv)φ (v) dv. (34)

We treat this integral as a function of parameter c and, hence,

ψ
′
(c) =

∂

∂c

[∫ ∞

0

Φ (cv)φ (v) dv
]

=
∫ ∞

0

(
∂

∂c
Φ (cv)

)
φ (v) dv =

∫ ∞

0

vφ (cv)φ (v) dv =
1

2π(1 + c2)
. (35)

Hence, ψ(c) = tan−1c
2π + k, k being the constant of integration.

Next, note thatψ(0) =
∫∞
0
Φ (0)φ (v) dv = 1

4 .

Therefore, k + tan−10
2π = 1

4 i.e k = 1
4 .

Hence, finally

ψ(c) =
tan−1c

2π
+

1
4

=
sin−1ρ

2π
+

1
4
. (36)

upon simplification.

Therefore,

E (T2 |V |) = 2
[(

sin−1ρ

2π
+

1
4

)
+

c

(c2 + 1) 2π

]
− 1

2
. (37)

Step 4

Now we evaluate E (T3 |V |) below.

E (T3 |V |) = E (φ (cV ) |V |) = 2
∫ ∞

0

vφ (cv)φ (v) dv =
1

π(1 + c2)
. (38)

Step 5
Therefore, compiling all the results together, from expressions 14, 16, 23, 24
we obtain

E (|U | |V |) = 2ρE (T2 |V |) + 2
√

(1 − ρ2)E (T3 |V |)

= 2ρ
[
2
[(

sin−1ρ

2π
+

1
4

)
+

c

(c2 + 1) 2π

]
− 1

2

]
+

2
√

(1 − ρ2)
π(1 + c2)

=
2
π

(
ρsin−1ρ+

√
(1 − ρ2)

)
(39)

upon simplification.

Therefore,

Cov (|U | |V |) =
2
π

[
ρsin−1ρ+

√
(1 − ρ2) − 1

]
. (40)

It is of interest to work out an expression for Corr (|U | |V |) as well. This is indicated below.
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Corr (|U | |V |) =
2
π

[
ρsin−1ρ+

√
(1 − ρ2) − 1

]
(
1 − 2

π

) =
(

2
π − 2

)[
ρsin−1ρ+

√
(1 − ρ2) − 1

]
. (41)

Particular Cases

Case1. ρ = 0 ⇔ c = 0.
Corr (|U | |V |) =

(
2

π−2

)
(1 − 1) = 0.

Case2. ρ = 1 ⇔ c = ∞.

Corr (|U | |V |) =
(

2
π−2

) [
sin−1 (1) − 1

]
=
(

2
π−2

) [
π−2

2

]
= 1.

Case3. ρ = −1 ⇔ c = −∞.

Corr (|U | |V |) =
(

2
π−2

) [{
(−1) sin−1 (−1)

}− 1
]

=
(

2
π−2

) [
(−1)

(−π
2

)− 1
]

=
(

2
π−2

) [
π−2

2

]
= 1
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